What Makes Phenolic Resin a Top Engineering Choice?
Jan 22, 2026
Compared to thermoplastic resins, thermosetting resins are fewer in type and quantity, and often play a "supporting" role. The first synthetic resin ever manufactured by humans was called phenolic resin. Phenolic resin is a thermosetting resin with good balanced properties and is currently sold in the form of laminates (where the resin and base material are interwoven). Phenolic resin continues to play an active role in advanced materials and other unique fields, and can be said to be a resin that influences and supports our daily lives.
1. What is Phenolic Resin?
Overview of Phenolic formaldehyde resin
Bakelite is a thermosetting resin known as phenolic resin (Bakelite Phenolic Resin). In industrial applications, it is a thermosetting sheet material applied to paper and fabric. It is also used in adhesives, coatings, electrical insulation materials, and other applications. Its raw materials are phenol and formaldehyde. By mixing these raw materials with acidic or alkaline catalysts and necessary curing agents and heating them, phenolic resin with a three-dimensional network structure can be produced. As a relatively inexpensive thermosetting resin, phenolic resin has excellent heat resistance, strength, and electrical insulation properties, and has been applied to various fields to date. With the emergence of thermoplastic resins, its application areas have gradually changed, but it continues to evolve in its own way to meet new market demands. To this day, various applications are still being developed to fully utilize the unique properties of phenolic resin, and its application areas are expected to continue to expand.
History of Phenolic Resin Development
Phenolic resin was discovered in 1872 by a German chemist during research on phenolic dyes; in 1907, a Belgian-American chemist patented the manufacturing method. In 1910, Baekeland established a phenolic resin company to achieve industrial production of phenolic resin and named the product "Bakelite" after himself. This name is still used today.
Types of Phenolic Resin
Currently, phenolic resin is generally not circulated as the resin itself, but in the form of laminates made by mixing the resin with a base material (paper or fabric). The manufacturing method involves coating each substrate with resin and then curing it through heat treatment. Laminates with paper as the base material are called "bakelite paper," and those with cloth as the base material are called "bakelite cloth." The characteristics of each product are as follows:
Phenolic Paper
Phenolic paper is a product made by interweaving phenolic resin with paper. It is cheaper (approximately half the price) and lighter than phenolic cloth. Phenolic paper is recommended for electrical insulation applications. However, it should be noted that since the base material is paper, it has high water absorption.
Phenolic Cloth
This is a phenolic resin with cloth as the base material. Compared to phenolic paper, it has superior mechanical properties and is therefore often used in applications requiring high strength. On the other hand, like phenolic paper, this base material also has high water absorption, so it must be used in environments with low moisture content.
2. Characteristics of Phenolic Resin
Advantages of Phenolic Resin
High Heat Resistance
Phenolic resin is a thermosetting resin, which means it has strong heat resistance. It can withstand temperatures up to 150-180°C and maintain its strength even under high-temperature conditions.
Excellent Electrical Insulation Performance
Phenolic resin has high electrical insulation performance, so it is used as an insulating material in printed circuit boards, circuit breakers, and switchboard coatings.
High Mechanical Strength
High mechanical strength is also a major advantage of phenolic resin. In particular, phenolic cloth has higher strength than phenolic paper, so phenolic cloth is often used in applications requiring impact resistance. However, it should be noted that the strength is affected by the fiber direction in the base material (paper and cloth).
Suitable for Injection Molding
When processing phenolic resin as a resin monomer, it can be processed using the same injection molding method as thermoplastic resins. The phenolic resin is heated to a temperature that does not cause hardening (approximately 50°C), then injected into a mold, and then heated to 150-180°C to cure it.
Disadvantages of Phenolic Resin
Difficult to Recycle
Phenolic resin is a thermosetting resin, and once cured and molded, it cannot be remolded, making recycling difficult. Currently, companies such as Sumitomo Bakelite Co., Ltd. are advancing research on the recycling and reuse of phenolic resins.
High water absorption
Phenolic resins sold in laminate form contain paper or cloth as a base material. Therefore, they have high water absorption and are not suitable for use in wet environments or environments with high humidity.
Low weather resistance and susceptibility to alkaline solvents
Phenolic resins are sensitive to ultraviolet radiation and must be used with caution outdoors. In addition, phenolic resins are easily soluble in alkaline substances.
3. Main Uses of Phenolic Resins
Since its industrial production began in 1907, phenolic resin has been widely used in everyday products around us, such as tableware, kitchenware, buttons, clocks, and clothing accessories. However, with the invention of various thermoplastic resins such as nylon and fluororesins, some applications of phenolic resin have been replaced by thermoplastic resins due to considerations of moldability and cost. Nowadays, the direct molding and processing of phenolic resin itself is gradually decreasing. However, phenolic resin still has a wide range of applications due to its unique properties. For example, phenolic resin, leveraging its excellent electrical insulation properties, is used in printed circuit boards, distribution panels, and circuit breakers. Printed circuit boards are not only essential materials for IT equipment such as personal computers and tablet computers, but also indispensable components in modern electrical products. Therefore, it is no exaggeration to say that phenolic resin can be applied to all areas of electricity use. In addition, it can be used as an adhesive, shell molding material, and coating. For example, phenolic resin is used as an adhesive in sand molds for casting and materials for 3D printers. Furthermore, its solubility in alkaline substances and its ability to absorb light at wavelengths of 200-300 nm make it suitable for use as a photoresist material. It is also widely used as a high-performance material in other fields, such as metal replacement parts, negative electrode materials for lithium-ion batteries, and activated carbon raw materials in the pharmaceutical industry. In 2010, the space capsule that returned samples from the asteroid "Itokawa" also used phenolic resin as a heat insulation material.
Phenolic resin, also known as Bakelite, was the world's first synthetic resin, developed over 100 years ago. It is a relatively inexpensive thermosetting resin with excellent heat resistance, strength, and electrical insulation properties, and offers a balanced performance profile. It is generally not marketed as the resin itself, but rather in the form of laminates made by mixing the resin with a base material (paper or cloth). Advantages of phenolic resin include excellent heat resistance and electrical insulation, high strength, and processability through injection molding. On the other hand, phenolic resin also has disadvantages such as difficulty in recycling, high water absorption, and susceptibility to ultraviolet radiation. Currently, phenolic resin is widely used in various fields, including printed circuit boards, switchboards, adhesives, coatings, photoresist materials, and negative electrode materials for lithium-ion batteries. Further advancements in its application areas are expected in the future.
Website: www.elephchem.com
Whatsapp: (+)86 13851435272
E-mail: admin@elephchem.com
LEER MÁS