Blog

Hogar

Blog

  • Preparation and Mechanical Properties of Polyvinyl Alcohol Film
    Aug 14, 2025
    Polyvinyl alcohol (PVA) is a widely used synthetic material. PVA ability to dissolve in water and break down naturally makes it a good choice for packaging films. The main production methods for PVA film are aqueous solution coating and melt blow molding. PVA is hard to shape with heat because it melts at a higher temperature than it decomposes. This is due to the strong links between its molecules and its crystal structure. Therefore, the most important factor in the processing of PVA film is the selection of appropriate additives.   1. Effect of Plasticizer Amount on Tensile Strength, Tear Strength, and Elongation at Break of Polyvinyl Alcohol Film As shown in Figure 1, film ability to resist breaking lessens as more plasticizer is added. This suggests that plasticizers reduce how strong the film is. The plasticizer gel theory explains that when the plasticizer mixes with the resin, it loosens the points where the resin molecules connect. These connections have different strengths. The plasticizer pulls them apart and hides the forces that hold the polymer together. This reduces the secondary forces between the polymer macromolecules, increases the flexibility of the macromolecular chains, and accelerates the relaxation process. Tensile strength goes down as you add more plasticizer. As the amount of plasticizer is increased, the film becomes more flexible and stretches further before breaking. This suggests that plasticizers make the film more pliable. Plasticizers achieve this by weakening the attraction between the large molecules in the polymer. This increased flexibility and longer relaxation period lead to the film ability to stretch further. The data indicates that as more plasticizer is added, the film becomes easier to tear. This likely happens as the plasticizer reduces the film's surface energy and lessens the energy needed for both plastic flow and lasting deformation. These factors, in turn, contribute to the film's reduced resistance to tearing.   2. Effect of Crosslinker Amount on the Tensile Strength, Elongation at Break, and Tear Strength of PVA Film As shown in Figure 3, the film's tensile strength goes up gradually as the amount of crosslinker is increased, during which the elongation at break goes down gradually. When a certain point is reached, the film's tensile strength goes down gradually, while the elongation at break goes up gradually. At first, as more crosslinker is added, the number of working polymer chains goes up, intermolecular forces get stronger, and the polymer chains become less flexible. The ability of the large molecular chains to change shape and rearrange decreases while the chain relaxation is difficult. So, the tensile strength goes up, while the elongation at break goes down. Continuing the use of crosslinkers causes degradation and branching to increase gradually, which decreases the number of working polymer chains, and increases the flexibility of the polymer chains. The ability of the large molecular chains to change shape and rearrange increases, while the chain relaxation becomes easier. As a result, the tensile strength starts to go down again, while the elongation at break goes back up. As shown in Figure 4, the tear strength of the film changes with the amount of crosslinker. At first, it goes up, but then it starts to go down. This happens because when crosslinking starts, more crosslinker helps the polymer network form. This makes the film's surface energy go up gradually. It then needs more energy to spread plastic flow and irreversible viscoelastic processes. Because of this, the film's tear strength gets better as crosslinking happens. But, if there is too much crosslinker with too much polymer broken down, and there are more branching reactions, the tear strength gets worse.   3. Conclusions When you add more plasticizer, PVA film becomes less strong but stretches and tears more easily. When you add more crosslinker, film strength and resistance to tearing improve at first, but then weaken, while its ability to stretch keeps getting better.   Website: www.elephchem.com Whatsapp: (+)86 13851435272 E-mail: admin@elephchem.com
    LEER MÁS
  • Process Simulation and Optimization of Vinyl Acetate Monomer Recovery
    Aug 12, 2025
    Polyvinyl alcohol (PVA) is a fundamental raw material for vinylon production and is also used in the production of adhesives, emulsifiers, and other products. In the PVA production process, solution polymerization is used to ensure a narrow degree of polymerization distribution, low branching, and good crystallinity. The VAM polymerization rate is strictly controlled at approximately 60%. Due to the control of the polymerization rate during the VAM polymerization process, approximately 40% of the Vinyl Acetate Monomer (VAM) remains unpolymerized and requires separation, recovery, and reuse. Therefore, research on VAM recovery process is a crucial component of the PVA production process. There is a polymer-monomer relationship between Ethylene Vinyl Acetate (EVA) and vinyl acetate monomer (VAM). Vinyl acetate monomer is one of the basic raw materials for making ethylene vinyl acetate polymer.   This paper uses the chemical simulation software Aspen Plus to simulate and optimize the VAM recovery process. We studied how process settings in the first, second, and third polymerization towers affect the production unit. We found the best settings to save water used for extraction and lower energy consumption. These parameters provide an important theoretical basis for the design and operation of VAM recovery.   1 Vinyl Acetate Monomer Recovery Process 1.1 Simulation Process This process includes the first, second, and third polymerization towers in the vinyl acetate monomer recovery process. The detailed flow diagram is shown in Figure 1.   1.2 Thermodynamic Model and Module Selection The vinyl acetate monomer recovery unit of the polyvinyl alcohol plant primarily processes a polar system consisting of vinyl acetate, methanol, water, methyl acetate, acetone, and acetaldehyde, with liquid-liquid separation between vinyl acetate and water. The main equipment in the vinyl acetate monomer recovery unit of the polyvinyl alcohol plant was simulated using Aspen Plus software. The RadFrac module was employed for the distillation tower, and the Decanter module for the phase separator.   2 Simulation Results We ran a process simulation on the vinyl acetate monomer recovery unit in the polyvinyl alcohol plant. Table 3 shows a comparison of the simulation results and actual values for the main logistics. As shown in Table 3, the simulation results are in good agreement with the actual values, so this model can be used to further optimize the process parameters and process flow.     3 Process Parameter Optimization 3.1 Determination of the Amount of Stripping Methanol Polymerization Tower 1 takes out vinyl acetate monomer (VAM) from the stream that remains after polymerization. It uses methanol vapor at the bottom for heat. The right amount of methanol is important for how well the tower works. This study looks at how different amounts of methanol affect the mass fraction of PVA at the tower's bottom and the mass fraction of VAM at the top, assuming the feed stays the same and the tower's design is constant.   As shown in Figure 2, when the heat capacity needed for separation in Polymerization Tower 1 is satisfied, raising the stripping methanol amount lowers the PVA mass fraction at the bottom and the VAM mass fraction at the top. The stripping methanol amount has a linear relationship with the PVA mass fraction at the bottom and the VAM mass fraction at the top.   3.2 Optimization of the Feed Position in Polymerization Tower 2 In Polymerization Tower 2, an extractive distillation tower, the locations where the solvent and feed enter greatly affect how well the separation works. This column uses extractive distillation. Based on the physical properties of the extractant and the mixed feed, the extractant should be added from the top of the column. Figure 3 shows how the mixture feed position affects the methanol mass fraction at the top and the reboiler load at the bottom, keeping other simulation settings the same.   3.3 Optimizing the Extraction Water Amount in Polymerization Column 2 In Polymerization Column 2, extractive distillation is used to separate vinyl acetate and methanol azeotrope. By adding water to the top of the column, the azeotrope is disrupted, allowing for the separation of the two substances. The extract water flow rate has a big impact on how well Polymerization Column 2 separates these materials. With consistent simulation settings, I looked at how the amount of extract water affected the methanol mass fraction at the top and the reboiler load at the bottom of the column. The results are shown in Figure 4.   3.4 Optimizing the Reflux Ratio in Polymerization Column 3 In Polymerization Column 3, the reflux ratio is important for separating vinyl acetate from lighter substances like methyl acetate and trace water. This boosts the quality of vinyl acetate obtained from the side stream. We kept the simulation settings constant and studied how the reflux ratio affects both the mass fraction of vinyl acetate from the side stream and the reboiler load. The calculation results are shown in Figure 6. Maintaining the polymerization tower's reflux ratio around 4 helps ensure the vinyl acetate from the side line meets quality standards and keeps the reboiler load low.     4. Conclusion (1) Using AspenPlus software, a suitable thermodynamic model is selected to simulate the entire process of vinyl acetate monomer recovery of the polyvinyl alcohol plant. The simulation results are in good agreement with the actual values and can be used to guide the process design and production optimization of the plant. (2) Based on the establishment of a correct process simulation, the influence of the process parameters of the polymerization tower 1, polymerization tower 2, and polymerization tower 3 on the plant is investigated, and the optimal process parameters are determined. When vinyl acetate meets the needed separation standards, we can save on extraction water and lower energy use.   Website: www.elephchem.com Whatsapp: (+)86 13851435272 E-mail: admin@elephchem.com  
    LEER MÁS
  • Efectos de las propiedades fisicoquímicas de la resina fenólica sobre su comportamiento espumante
    Aug 07, 2025
    La espuma de carbono, un material carbonoso funcional con estructura de panal, no solo presenta excelentes propiedades como baja densidad, alta resistencia, resistencia a la oxidación y conductividad térmica ajustable, sino que también presenta una excelente procesabilidad. Por lo tanto, puede utilizarse como conductor térmico, aislante, portador de catalizador, biosolidificador y absorbedor. Presenta amplias posibilidades de aplicación en aplicaciones militares, aislamiento de edificios para ahorro energético, catálisis química, tratamiento biológico de aguas residuales y energía. La espuma de carbono se puede clasificar en dos tipos: una que permite el paso del calor fácilmente (conductor térmico) y otra que lo impide (aislante térmico). La diferencia radica en el grado de conversión del material de carbono original en grafito. Brea de mesofase y resina fenólica Son dos precursores carbonosos típicos para la producción de espumas de carbono de alta y baja conductividad térmica, respectivamente. Actualmente, tanto las resinas fenólicas termoendurecibles como las termoplásticas son precursores carbonosos de alta calidad para la producción de espuma de carbono de baja conductividad térmica. Utilizando resina fenólica como materia prima, se puede producir una espuma de resina fenólica añadiendo un agente de expansión y un agente de curado, y espumando a presión normal. La espuma de carbono se produce posteriormente mediante carbonización a alta temperatura. La resistencia a la compresión de esta espuma de carbono es inferior a 0,5 MPa, lo que limita su uso. Cuando Resina fenólica 2402 Como materia prima, los poros de la espuma de carbono producida a diferentes presiones de espumado son prácticamente esféricos (Figura 6). Al no añadir agente espumante, el proceso de espumado sigue un mecanismo de autoespumado, donde el material de la matriz experimenta una reacción de craqueo a una temperatura determinada, generando los correspondientes gases de moléculas pequeñas. A medida que se forman, los gases se acumulan y forman poros. La viscosidad, la estructura, el volumen, la forma y la tasa de producción de gas del material base cambian a medida que se produce el gas de craqueo. Esto significa que la estructura de los poros en la espuma de carbono depende de la viscosidad del material base, la tasa de producción de gas, el volumen, la rapidez con la que cambia su viscosidad y la presión exterior dentro del rango de temperatura de espumado.A temperaturas de formación de espuma entre 300 y 425 °C, la resina fenólica 2402 produce mucho gas de craqueo (Figura 3(a)) y tiene baja viscosidad (
    LEER MÁS
  • ¿Qué son las resinas fenólicas y cómo se clasifican?
    Aug 05, 2025
    Resina de formaldehído fenoico (PF) Son un grupo variado de resinas sintéticas producidas mediante la reacción de compuestos fenólicos y aldehídos. Estas resinas se observaron por primera vez en la década de 1870, cuando Bayer creó la primera síntesis. Posteriormente, mediante estudios continuos, L. H. Baekeland, un científico estadounidense, creó un sistema de resina fenólica útil en 1909. Posteriormente, fundó la Bakelite Company, que inició la producción industrial de resinas fenólicas. Estas resinas son comunes en la actualidad en compuestos de moldeo, productos de peinado, aislamientos, recubrimientos, materiales de encapsulación y materiales refractarios. 1.Síntesis de resinas fenólicas Las resinas fenólicas se fabrican a partir de diversas materias primas, lo que da lugar a diversos tipos y propiedades. La resina de fenol-formaldehído es la resina industrial más utilizada. Se crea a partir de fenol y formaldehído mediante un proceso de dos pasos que incluye adición y policondensación. Dependiendo de los requisitos específicos del material, el proceso de reacción y la velocidad de las reacciones de adición y policondensación pueden controlarse modificando las condiciones del proceso de síntesis de las resinas fenólicas para producir resinas con diferentes estructuras moleculares, viscosidades, contenido de sólidos y contenido de carbono residual. 2. Clasificación de las resinas fenólicas La estructura molecular de las resinas fenólicas puede modificarse controlando los parámetros de síntesis. Estos parámetros afectan las reacciones de adición y policondensación. Según estas estructuras moleculares, las resinas fenólicas se clasifican en termoplásticas y termoendurecibles.2.1 Resina fenólica termoplástica (Novolac) Resina fenólica termoplástica (como Resina fenólica 2402) son resinas fenólicas lineales caracterizadas por su disposición molecular de cadena recta. Se producen principalmente mediante la reacción del exceso de fenol (P) con formaldehído (F) en condiciones ácidas.Las resinas fenólicas termoplásticas se crean mediante una reacción de dos etapas: primero, una reacción de adición y luego, una reacción de policondensación. Dado que la reacción tiene lugar en un entorno ácido, la adición resulta principalmente en la formación de grupos monometilol en las posiciones orto y para del anillo de benceno (véase la Figura 2). La segunda etapa, la policondensación, implica principalmente la deshidratación del monometilolfenol producido con el monómero de fenol. Además, en condiciones ácidas, la velocidad de la reacción de policondensación es mucho mayor que la de la reacción de adición. Asimismo, la presencia de fenol en el sistema de reacción es mayor que la de formaldehído. Esto provoca que los grupos hidroximetilo generados durante el proceso de adición reaccionen rápidamente con el exceso de fenol en el sistema para formar macromoléculas lineales, lo que resulta en la ausencia de grupos funcionales hidroximetilo activos en las moléculas del producto de reacción. La fórmula estructural se muestra en la Figura 4.2.2 Resina fenólica termoendurecible (Resole) Resina fenólica termoendurecible (como Resina fenólica para materiales electrónicos) es un producto intermedio relativamente reactivo sintetizado al reaccionar durante un cierto período de tiempo bajo la acción de un catalizador alcalino y calor a una relación molar de formaldehído a fenol mayor que 1. Por lo tanto, si el proceso de síntesis no se controla, puede reaccionar fácilmente de forma violenta, dando lugar a reacciones de gelificación e incluso de reticulación, formando finalmente macromoléculas insolubles e infusibles. El proceso de síntesis de resina fenólica termoendurecible se divide en dos etapas. La etapa inicial implica una reacción de adición donde se forman grupos hidroximetilo en el anillo bencénico, específicamente en las posiciones orto y para, lo que da lugar a la creación de monometilolfenol. Dado que la actividad reactiva de los átomos de hidrógeno activo en las posiciones orto y para del anillo bencénico es mucho mayor que la del grupo hidroxilo en el grupo hidroximetilo en condiciones alcalinas, el grupo hidroximetilo resultante no se policondensa fácilmente. Los átomos de hidrógeno activo del anillo bencénico pueden reaccionar con más grupos hidroximetilo, lo que da lugar a la creación de dimetilol y trimetilolfenol. La Figura 5 muestra esta reacción de adición. A continuación, se produce una reacción de policondensación donde los grupos polimetilol reaccionan con los átomos de hidrógeno activo del monómero fenólico. Esto crea un puente metino, o bien los grupos hidroximetilo se deshidratan para formar un enlace éter. A medida que esta policondensación continúa, se produce una resina fenólica resol ramificada. El mecanismo de curado de las resinas fenólicas termoendurecibles es bastante complejo. Actualmente, la teoría más aceptada se basa en los grupos hidroximetilo activos presentes en la estructura molecular de las resinas fenólicas termoendurecibles. Durante el calentamiento, estos grupos hidroximetilo reaccionan de dos maneras: con átomos de hidrógeno activos en el anillo de benceno para formar enlaces de metileno, o con otros grupos hidroximetilo para formar enlaces de éter. 3. El mecanismo de unión de las resinas fenólicas como aglutinantes Existen cuatro ideas principales para explicar cómo los adhesivos poliméricos unen las piezas: interbloqueo mecánico, difusión, atracción electrónica y adsorción. En los sistemas de resina fenólica, el interbloqueo mecánico es clave. El proceso de adhesión de las resinas fenólicas se realiza en dos pasos. Primero, la resina penetra en todos los pequeños orificios y zonas irregulares de la superficie a la que se une. Para ello, la resina debe humedecer bien la superficie. A continuación, la resina fenólica se endurece. Durante este proceso, las moléculas se unen para formar una red. Esto permite que las moléculas de resina se adhieran a los orificios y zonas irregulares, creando una fuerte adherencia que mantiene la resina y la superficie firmemente unidas. Sitio web: www.elephchem.comWhatsApp: (+)86 13851435272Correo electrónico: admin@elephchem.com
    LEER MÁS
  • ¿Qué factores influyen en la viscosidad de las emulsiones VAE?
    Aug 01, 2025
    Las emulsiones VAE son productos ecológicos. Los grupos vinilo están incrustados en la cadena molecular del acetato de polivinilo, lo que confiere a la emulsión polimérica una baja temperatura de formación de película y excelentes propiedades formadoras de película. Presentan una fuerte adhesión a materiales de difícil adhesión como PET, PVC, PE y PP. La película de polímero producida es muy resistente al agua y a la intemperie. También resiste bien el frotamiento y se mantiene flexible incluso a bajas temperaturas. El espesor de las emulsiones VAE se ve afectado por diversos factores. 1. Efecto del contenido de sólidos en la viscosidadRealizamos pruebas exhaustivas sobre las formulaciones y las condiciones del proceso de Emulsión VAE DA-180L y VINNAPAS 400, respectivamente. Los datos de las siguientes tablas se derivan de estas pruebas. La relación entre el contenido de sólidos y la viscosidad se muestra en la Tabla 1.Como se muestra en la Tabla 1, un mayor contenido de sólidos aumenta la viscosidad. Esto se debe a que un mayor contenido de sólidos aumenta el número de partículas coloidales en la misma masa de emulsión, reduce la cantidad de fase acuosa y aumenta la superficie total de las partículas. Esto mejora las interacciones entre partículas y la resistencia al movimiento, lo que resulta en una mayor viscosidad. 2. Efecto de los coloides protectores sobre la viscosidadEn la polimerización en emulsión, los coloides protectores se utilizan a menudo como estabilizadores de emulsión para mejorar la estabilidad del emulsionante y ajustar la viscosidad. La estabilidad de la emulsión del PVA parcialmente hidrolizado también está relacionada con la distribución de los grupos acetilo en la cadena polimérica. Un mayor grado de bloqueo en la distribución de los grupos acetilo resulta en una mayor actividad superficial, una mejor estabilidad de la emulsión y emulsiones más pequeñas y viscosas. Cuanto mayor sea el grado de polimerización del PVA, mayor será la viscosidad de la solución acuosa de alcohol polivinílico antes de la polimerización y mayor la viscosidad del VAE. Cuanto mayor sea el grado de alcoholisis del PVA, menor será la viscosidad del VAE. La capacidad coloidal protectora del PVA aumenta con el aumento del grado de polimerización. El PVA de bajo grado forma partículas de látex más gruesas y presenta una viscosidad menor. Un aumento en el grado de polimerización mejora tanto la capacidad protectora como la dispersante. Para mantener las propiedades de dispersión y protección del PVA durante la polimerización en emulsión, ajustando únicamente la viscosidad, la cantidad total de PVA se mantiene constante, ajustando únicamente la relación entre ambas. Con las demás condiciones sin cambios, añadiendo 4,54 kg de Alcohol polivinílico PVA 088-20 Aumentará la viscosidad de cada lote en 100 mPa·s. La Tabla 2 muestra el peso molecular y la distribución del peso molecular de las emulsiones VAE de alta y baja viscosidad.La Tabla 2 muestra que la emulsión de baja viscosidad tiene un mayor peso molecular, partículas más gruesas y una distribución de tamaño de partícula más amplia que la emulsión de alta viscosidad, lo que resulta en una menor viscosidad. 3. Efecto del iniciador inicial sobre la viscosidadEl iniciador influye decisivamente en la velocidad de polimerización. Cuanto más iniciador se utiliza, más rápida es la reacción de polimerización, lo que dificulta su control. Una vez determinadas las condiciones de polimerización y el tipo de iniciador, se puede ajustar la cantidad de iniciador para ajustar el peso molecular del polímero. Cuanto más iniciador se utiliza, menor es el peso molecular del polímero y aumenta la viscosidad de la emulsión, y viceversa. Entre ellos, la cantidad de iniciador inicial (ICAT) añadida es la que tiene mayor impacto.Estos datos muestran claramente que cuanto mayor sea la cantidad de iniciador inicial añadido, mayor será la viscosidad de la emulsión. Esto se debe a que cuanto mayor sea la cantidad de iniciador inicial añadido, mayor será la dificultad de reacción del monómero o la velocidad de reacción será lenta en la etapa inicial, y el polímero resultante tendrá menor peso molecular, menor tamaño de partícula y mayor viscosidad. 4. Conclusiones(1) Cuanto mayor sea el contenido de sólidos de la emulsión, mayor será la viscosidad.(2) Cuanto mayor sea el grado de polimerización del coloide protector PVA, mayor será la viscosidad de la emulsión y viceversa.(3) La viscosidad de la emulsión cuando se utiliza PVA como coloide protector es mayor que cuando se utiliza celulosa o surfactante como coloide protector.(4) Con el mismo grado de polimerización, cuanto mayor sea el grado de alcohólisis, menor será la viscosidad de la emulsión.(5) Cuanto mayor sea la cantidad de iniciador inicial y total de iniciador añadido, mayor será la viscosidad de la emulsión. Sitio web: www.elephchem.comWhatsApp: (+)86 13851435272Correo electrónico: admin@elephchem.com
    LEER MÁS
  • Investigación y producción de emulsiones VAE con alto contenido de etileno
    Jul 30, 2025
    Emulsión VAE Son a base de agua y respetuosas con el medio ambiente. Se utilizan ampliamente como aglutinantes en pegamentos fuertes. A medida que la tecnología mejora y el mercado de emulsiones crece, la demanda de emulsiones VAE aumenta, principalmente aquellas con alto contenido de etileno. Estas emulsiones VAE con alto contenido de etileno son muy resistentes al agua y a los álcalis, por lo que son cada vez más populares.La cantidad de etileno presente en las emulsiones VAE depende de factores como la presión, la temperatura, el tiempo, la cantidad de iniciador utilizado, el tipo y la cantidad de emulsionante, y cómo se añade el VAE. Últimamente, el mercado demanda emulsiones VAE con una excelente capacidad de fijación del agua. Este artículo analiza cómo la cantidad de etileno en las emulsiones VAE las afecta. Se utilizaron diferentes pesos moleculares de alcoholes polivinílicos (Alcohol polivinílico PVA 088-20 y Alcohol polivinílico PVA 0588) como coloides protectores, y se utilizó un PVA especial como parte del coloide protector para ver cómo estos coloides cambian las propiedades de la emulsión VAE. 1. Efecto del contenido de emulsionante en las propiedades de la emulsiónEn los sistemas de polimerización en emulsión, el tipo y la concentración del emulsionante, así como diversos factores que pueden influir en su efecto emulsionante, afectan directamente la estabilidad de la reacción de polimerización y, en última instancia, las propiedades de la emulsión. Como se observa en la Tabla 3 y la Figura 2, un aumento en el contenido de emulsionante conlleva una mayor tasa de conversión, pero una menor fracción de gel. Si el emulsionante supera el 4%, la tasa de conversión disminuye, lo que sugiere que la sustancia no es químicamente estable. Por lo tanto, el contenido óptimo de emulsionante para este experimento es del 4%. 2. Efecto del contenido de iniciador en el peso molecular y la viscosidad de la emulsiónEl iniciador es el componente más importante de toda la formulación de la emulsión VAE. Se descompone y libera radicales libres, que son la base de la polimerización en emulsión. La Figura 3 muestra que, al aumentar el contenido de iniciador, tanto el peso molecular como la viscosidad muestran una tendencia ascendente, siendo la dosis óptima de iniciador del 2,5 %. 3. Efecto de la temperatura de reacción en la reacción de emulsiónLa Tabla 4 muestra que, al aumentar la temperatura de reacción, la velocidad de reacción se acelera, el contenido de monómero residual disminuye y la cantidad de agregados aumenta. Elevar la temperatura de reacción acelera la descomposición del iniciador, lo que genera más radicales libres y aumenta el número de puntos donde pueden ocurrir las reacciones. Al mismo tiempo, una temperatura más alta hace que las partículas de látex se muevan de forma más aleatoria, lo que significa que chocan entre sí y se unen con mayor frecuencia. Debido a esto, la emulsión se vuelve menos estable e incluso podría gelificarse o separarse. Por lo tanto, la temperatura de reacción inicial se determina en 65 °C y la temperatura de reacción posterior en 70 a 85 °C. 4. Efecto de la presión de reacción de polimerización sobre el contenido de etileno, el contenido de sólidos y la viscosidad.La Figura 4 muestra que el aumento de la presión de reacción dentro de un rango determinado aumenta gradualmente el contenido de etileno de la emulsión VAE y disminuye la temperatura de transición vítrea del producto. A una presión de reacción de 7,5 MPa, el contenido de etileno alcanza el 21 % y la temperatura de transición vítrea desciende a -4 °C. Como se muestra en la Figura 5, en las mejores condiciones de reacción, el contenido de sólidos aumenta al aumentar la presión de polimerización, pero el cambio es pequeño, manteniéndose dentro del (56 ± 0,5) %. La viscosidad de la emulsión primero aumenta y luego disminuye al aumentar la presión de polimerización, alcanzando un máximo de 3200 mP·s a una presión de polimerización de 6 MPa antes de disminuir. Esto indica que una presión determinada puede facilitar la polimerización y aumentar la viscosidad de la emulsión. 5. Efecto del PVA modificado como coloide protector sobre las propiedades de la emulsión VAEPara aumentar la resistencia al agua de las emulsiones VAE, se utilizó un PVA modificado con grupos hidrófugos en sustitución de una parte del coloide protector PVA1788. La Tabla 5 muestra cómo las diferentes cantidades de PVA modificado (del 10 % al 50 % del coloide protector total) modifican la estabilidad, el espesor y la resistencia al agua de las emulsiones VAE. Los datos de la Tabla 5 muestran que, a medida que aumenta la cantidad de PVA modificado, la emulsión se mantiene estable sin separarse, lo que sugiere que el PVA modificado no afecta realmente a la estabilidad del sistema. Según la Figura 6, la emulsión se espesa a medida que aumenta el contenido de PVA modificado, alcanzando un máximo de 4000 mPa·s cuando el PVA modificado constituye el 5 % de la mezcla. 6. Emulsiones VAE con diferentes contenidos y propiedades de etilenoElaboramos diferentes emulsiones VAE analizando cómo las distintas condiciones de reacción modifican sus propiedades. Estas emulsiones tenían distintas cantidades de etileno, temperaturas de transición vítrea y VAc residual. Descubrimos que iniciar la reacción a 65 °C es lo más efectivo. Posteriormente, la temperatura puede ajustarse entre 70 °C y 85 °C. Un contenido de emulsionante del 4 % y una dosis de iniciador del 2,5 % también producen los mejores resultados. Controlando la presión de reacción, logramos crear emulsiones VAE con un contenido de etileno del 9 % al 23 %. Al sustituir parte del coloide protector por PVA modificado hidrofóbicamente, la resistencia al agua de las emulsiones mejoró significativamente. Sitio web: www.elephchem.comWhatsApp: (+)86 13851435272Correo electrónico: admin@elephchem.com
    LEER MÁS
  • Desarrollo de un adhesivo de caucho de cloropreno injertado binario
    Jul 25, 2025
    Adhesivo de caucho de cloropreno Es la variedad más grande y más utilizada entre los adhesivos de caucho. Se puede clasificar en varios grupos, como modificado con resina, relleno, injertado y látex. El adhesivo de caucho de cloropreno injertado, que está hecho principalmente de caucho de cloropreno y un modificador injertado, es conocido por su fácil uso, fuertes enlaces, alta adhesión inicial y múltiples usos. Ya en la década de 1950, la industria zapatera comenzó a utilizar adhesivo de caucho de cloropreno. A medida que los materiales y estilos de fabricación de calzado cambian, el adhesivo de caucho de cloropreno estándar puede no ser lo suficientemente fuerte. Esto puede causar que la parte superior y la suela de los zapatos, o suelas compuestas, se separen. Este problema perjudica la calidad del calzado y limita el crecimiento en el negocio del calzado adhesivo. Para resolver este problema, utilizamos una variedad de cauchos de cloropreno injertables en el país y en el extranjero como cuerpos de injerto y utilizamos MMA para estudiar su modificación de injerto. 1 Mecanismo de injerto 2 Parte experimental 2.1 Materias primas y fórmula de polimerización 2.2 Procedimiento de polimerizaciónAgregue CR al solvente. Caliente la solución a 50 °C y revuelva hasta que el CR se disuelva completamente. Eleve la temperatura a 80 °C y agregue lentamente la solución de MMA que contiene BPO mientras agita. Mantenga la temperatura y continúe agitando hasta que la viscosidad alcance un nivel adecuado (aproximadamente 40 minutos). Inmediatamente agregue hidroquinona para detener la reacción. Mantenga caliente durante 4 a 6 horas. Después de que la reacción se complete, enfríe a 40 °C; agregue resina espesante, agente vulcanizante, antioxidante y relleno, y finalmente mantenga caliente durante 2 a 3 horas, enfríe a temperatura ambiente y obtenga el producto. Se puede agregar una pequeña cantidad de tolueno para ajustar la viscosidad. El copolímero de injerto obtenido (CR-MMA) es un líquido viscoso transparente de color marrón amarillento. La viscosidad mide entre 1000 y 1500 mPa·s. El contenido de sólidos varía del 15% al 25% y los registros de resistencia a 34 N/cm². 2.3 Análisis del producto2.3.1 Determinación de la viscosidad del adhesivoEl valor de viscosidad (mPa·s) se probó en un baño de agua a temperatura constante de 25 °C utilizando un viscosímetro rotatorio (Shanghai Optical Factory, tipo NDI-1).2.3.2 Determinación del contenido de sólidos adhesivosTras el secado al vacío y con un peso constante del adhesivo, la película se envolvió con papel de filtro y se colocó en un extractor de grasa. Se extrajo con acetona en un baño de agua a temperatura constante de 65 °C durante 48 horas (para eliminar el homopolímero de PMMA en la copolimerización). El contenido de sólidos (% en peso) se calculó según la siguiente fórmula:Peso %=Peso2 / W1×100%En donde, W1 es la masa del adhesivo injertado, y W2 es la masa de la película después del secado al vacío y peso constante.2.3.3 Determinación de la resistencia al pelado del cuero artificial/cuero artificial (PVC/PVC) unido mediante adhesivoLa lámina de PVC blando se limpió con acetona o butanona para eliminar las manchas de aceite de la superficie. Todo el proceso se realizó de acuerdo con la norma GB7126-86. 3 Resultados y discusión 3.1 Selección del disolventeEl disolvente utilizado en el adhesivo de caucho de cloropreno es muy importante. Afecta la solubilidad del caucho de cloropreno, la viscosidad inicial del adhesivo, la estabilidad, la permeabilidad al adherente, la resistencia de la unión, la inflamabilidad y la toxicidad, etc. Por lo tanto, la selección de disolventes debe considerar diversos factores.Los disolventes comúnmente utilizados incluyen tolueno, acetato de etilo, butanona, acetona, n-hexano, ciclohexano, gasolina disolvente, etc. La prueba confirmó que cuando el disolvente no puede disolver el caucho de cloropreno solo, se pueden mezclar dos o tres disolventes en proporciones apropiadas para tener buena solubilidad, viscosidad y baja toxicidad. 3.2 Efecto del tipo de CR y la concentración en el rendimiento de los productos injertadosLos diferentes tipos de caucho de cloropreno (CR) presentan diferencias en la rapidez con la que forman cristales y la intensidad de sus colores. Estos factores pueden modificar la adherencia inicial de los materiales injertados y su aspecto. Las pruebas demuestran que el uso de... Caucho de cloropreno Denka A120 y Caucho de cloropreno SN-244X El injerto de caucho de cloropreno produce una buena adhesión inicial y color. La cantidad de CR no altera significativamente la resistencia al desprendimiento, pero sí afecta la eficacia de la copolimerización. Cuando la concentración de CR es demasiado alta, es decir, la viscosidad es alta, el MMA es difícil de difundir y tiene una fuerte tendencia a autopolimerizarse. Es necesario mantener una concentración adecuada de CR; si es demasiado baja, el volumen de MMA será demasiado pequeño, lo que ralentiza la copolimerización por injerto. La concentración de CR funciona mejor entre el 11 % y el 12 %. 3.3 Efecto del tiempo de reacción en el rendimiento de los productos injertadosEn general, cuanto mayor sea el tiempo de reacción, mayor será la tasa de injerto y el valor de viscosidad. Inicialmente, la fuerza de adhesión inicial y final aumenta con la prolongación del tiempo de reacción y el aumento de la viscosidad. Tiempos de reacción prolongados, junto con una alta viscosidad, pueden reducir tanto la adhesión inicial como la final. Los experimentos sugieren que, idealmente, los tiempos de reacción deberían estar entre 3 y 5 horas. 3.4 Efecto de la temperatura de reacción sobre la reacción del injertoCuando la temperatura de reacción es inferior a 70 °C, la reacción es lenta debido a la lenta descomposición del BPO. Dado que el BPO se descompone rápidamente por encima de 90 °C, lo que provoca un rápido aumento de la viscosidad y un procesamiento deficiente, fijamos la temperatura de reacción entre 80 °C y 90 °C. 4 ConclusiónNuestras pruebas iniciales incluyeron experimentos a mayor escala y pruebas piloto de producción, que dieron como resultado productos aceptables. Se suministraron a numerosas fábricas de calzado de cuero con resultados satisfactorios. La calidad cumplió con los diversos estándares requeridos para la fabricación de calzado.El adhesivo injertado CR-MMA presenta una mayor resistencia al desprendimiento en cuero artificial de PVC que el adhesivo CR convencional utilizado para botas. La adición de una pequeña cantidad de isocianato (5-10%) puede actuar como agente de curado temporal. El grupo -NCO del isocianato reacciona entonces con el hidrógeno activo del caucho, creando un enlace amida. Esta reacción refuerza la estructura interna del caucho, mejorando la resistencia general de la unión. Sitio web: www.elephchem.comWhatsApp: (+)86 13851435272Correo electrónico: admin@elephchem.com
    LEER MÁS
  • Análisis de los factores que afectan el rendimiento integral del caucho de cloropreno 2442
    Jul 22, 2025
    Caucho de cloropreno (CR) Es un caucho sintético obtenido por polimerización de cloropreno. Es ampliamente utilizado debido a su excelente resistencia al envejecimiento, al aceite y a la corrosión, entre otras propiedades. Caucho de policloropreno CR2442 El caucho vulcanizado tiene buenas propiedades físicas y se puede utilizar en muchas ocasiones (como adhesivo de caucho de cloropreno). Sin embargo, dado que el proceso de CR2442 en mezcla interna, mezcla abierta y vulcanización no es fácil de dominar, las propiedades físicas del caucho vulcanizado preparado a veces son deficientes, lo que afecta su producción y aplicación. 1. Influencia de los parámetros del proceso en la preparación de caucho mixto y caucho vulcanizado.1.1 Proceso de mezcla del mezclador internoEl CR2442 presenta altos requisitos para el proceso de mezcla. Al preparar caucho mezclado con CR2442, la temperatura inicial, el tiempo de mezcla y la velocidad del rotor del mezclador interno influyen considerablemente en la temperatura de descarga. Esta temperatura es un parámetro importante para medir el proceso de mezcla. La temperatura óptima de descarga del CR2442 es de 110 °C. El orden de adición de los distintos materiales durante el proceso de mezcla también es importante. La forma correcta de añadir materiales al CR2442 durante el proceso de mezcla es: añadir CR2442 y materiales pequeños simultáneamente → añadir negro de humo → añadir negro de humo blanco y aceite de operación en secuencia. 1.2 Proceso de mezcla del molino abiertoTras enfriarse el caucho mezclado en el mezclador interno, se añade el sistema de vulcanización en el molino abierto. Este sistema incluye agente vulcanizante y acelerador. La forma correcta de añadirlo es primero el acelerador y luego el agente vulcanizante. Al añadir el sistema de vulcanización al caucho mezclado en el molino abierto, generalmente se requiere que haya caucho acumulado en el rodillo. Con el corte y la extrusión en el molino abierto, la temperatura del rodillo aumenta significativamente. Si la temperatura del caucho es demasiado alta, se debe cortar, extraer y enfriar, y luego mezclarlo una vez que se haya enfriado por completo. 1.3 Proceso de vulcanizaciónTras añadir el sistema de vulcanización en el laminador abierto, el caucho se enfría y se deja reposar de 16 a 24 horas antes de la vulcanización. Dado que el caucho mixto CR2442 cristaliza fácilmente a bajas temperaturas, generalmente es necesario realizar un tratamiento de calentamiento indirecto en un horno. El tiempo de vulcanización del CR2442 se ajustó a 30, 40, 50, 60, 70 y 80 minutos, respectivamente. Tras numerosas pruebas, se observó que la resistencia a la tracción y el alargamiento a la rotura del caucho vulcanizado alcanzaban su máximo valor con un tiempo de vulcanización de 60 minutos. Por lo tanto, el tiempo óptimo de vulcanización del CR2442 se determinó en 60 minutos. 1.4 Operación de uniónDurante el proceso de unión de caucho y latón, este se corta primero en láminas con la misma longitud y anchura que el molde. Tras precalentar el molde, la película cortada se coloca en su cavidad. Dado que el molde se calienta, una colocación demasiado lenta provocará una vulcanización prematura del caucho, reducirá su fluidez, la adhesión será insuficiente y, por consiguiente, la fuerza de adhesión. Por lo tanto, el tiempo de quemado debe controlarse para que sea mucho mayor que el tiempo de colocación de la película. 2. Influencia del sistema de vulcanización, sistema de refuerzo y sistema de unión.Sistema de vulcanización: Cuando CR2442 utiliza solo óxido de zinc y óxido de magnesio para la vulcanización, las propiedades físicas del caucho resultante son peores en comparación con cuando se utilizan óxido de zinc, óxido de magnesio, azufre y acelerador DM como sistema.Sistema de refuerzo: El sistema de refuerzo del CR2442 suele basarse en negro de humo y complementarse con negro de humo blanco.Sistema de unión: El caucho como material único ya no satisface las necesidades de la sociedad, y a menudo es necesario unirlo al metal para ampliar su alcance de uso. El CR2442 se suele unir al metal mediante un sistema de unión de resorcinol-metileno-negro de humo blanco-sal de cobalto. 3. ConclusiónAl mezclar, es importante considerar la temperatura, el tiempo de mezclado y la velocidad de giro del rotor. Además, al añadir el sistema de vulcanización mediante el molino abierto, preste atención al orden de adición. El calor de los rodillos puede cambiar significativamente la situación. Para la vulcanización y la unión, si se asegura de que el tiempo de quemado sea mayor que el necesario para colocar la muestra, se puede obtener caucho vulcanizado de mejor calidad y una mejor adhesión con otros tipos de materiales. La temperatura de descarga del CR2442 también es importante. Es recomendable añadir negro de humo blanco como refuerzo al CR2442. Esto ayuda a controlar la velocidad de vulcanización y unión. Sitio web: www.elephchem.comWhatsApp: (+)86 13851435272Correo electrónico: admin@elephchem.com
    LEER MÁS
  • Neopreno moderno: innovaciones y perspectivas
    Jul 18, 2025
    Caucho de cloropreno (CR) Es una de las variedades de caucho más utilizadas. La resistencia del caucho vulcanizado sin refuerzo de negro de humo puede alcanzar los 28 MPa, y su elongación relativa es de aproximadamente el 800 %. Presenta resistencia al aceite, a las llamas, a la oxidación y al ozono. Es soluble en benceno y cloroformo. Se hincha ligeramente, pero no se disuelve en aceite mineral ni vegetal.1. Avances en la tecnología CR en el extranjeroProducción de monómerosEn EE. UU., DuPont ideó un método líquido para producir cloropreno a partir de butadieno. Este método es más seguro que el método gaseoso utilizado inicialmente. Permite obtener productos de mayor rendimiento a menor costo, mejorar la seguridad y reducir los costos de mantenimiento. En 1992, la empresa modernizó su línea de producción de monómeros, pasando de un sistema de control de bucle único a un sistema de control distribuido computarizado. Tecnología de posprocesamientoLos recientes avances en la tecnología de posprocesamiento de CR se evidencian en los desarrollos relacionados con la deshidratación y el secado por extrusión en espiral. El látex de cloropreno y el coagulante se introducen en una extrusora de tornillo con un diseño específico. El látex coagulado elimina la mayor parte del agua en la sección de deshidratación de la extrusora mediante la contrapresión. El éxito de este proceso ha creado las condiciones para la producción industrial de CR y asfalto, así como de CR y fibras cortas, aumentando así la flexibilidad operativa y permitiendo el manejo de variedades de CR con propiedades deficientes de formación de películas y cintas durante la congelación. En 1992, DuPont lanzó una serie de masterbatches de elastómeros que incluían CR con fibras cortas de Kevlar (poliarilamida) como materiales de refuerzo, lo que demuestra que este proceso ha comenzado a utilizarse en la producción de productos mezclados.Desarrollo de nuevas variedadesExisten cientos de marcas extranjeras. Empresas de Estados Unidos y Japón han desarrollado numerosos CR especiales de alto rendimiento basados en una serie de marcas consolidadas. Para mejorar la estabilidad térmica del CR, Bayer ha desarrollado copolímeros de cloropreno (CD) con amida de ácido carboxílico, anhídrido de ácido carboxílico y/o monómeros de ácido carboxílico. Estos nuevos CR también ofrecen mejores características de pulverización y aplicación con brocha. Denka Corporation de Japón también ha mejorado sus productos tradicionales y ha lanzado una nueva generación de CR. (Caucho de cloropreno Denka)Por ejemplo, la serie DCR 20. Tosoh Corporation de Japón también desarrolla CR especial con capacidad de absorción de impactos y ha producido látex CR con alta temperatura de ablandamiento, buenas propiedades adhesivas a temperatura normal y alta temperatura, alta resistencia al agua y estabilidad. (SKYPRENE Caucho de cloropreno).  2. Avances en la tecnología CR domésticaEn 1958, la Planta Química Changshou en Sichuan, China, construyó un dispositivo para producir CR con acetileno. La principal producción de CR en China no controla la tasa de conversión, y en muchos lugares se utilizan operaciones manuales, lo que se traduce básicamente en una producción de taller. Además de los primeros productores de pegamento CR, como Chongqing Changshou Chemical Co., Ltd., Shanxi Synthetic Rubber Company, Jiangsu Lianshui Chemical General Plant y Tianjin Donghai Adhesives Company, Shandong Laizhou Kangbaili Glue Industry Co., Ltd. desarrolló en octubre de 2003 un nuevo pegamento CR. Seleccionó y mezcló cuidadosamente el disolvente compuesto.  3. Sugerencias para el desarrollo de la industria nacional de CRFortalecer el desarrollo tecnológicoPara las empresas nacionales de negro de humo, es fundamental impulsar la inversión en ciencia y tecnología, junto con la adopción y asimilación de tecnología extranjera avanzada. Estas medidas deberían reducir el consumo y los costos, y aumentar rápidamente el uso de acetileno del 57 % a más del 70 %.Fortalecer el desarrollo de nuevas variedadesPara mantener la viscosidad Mooney en los productos actuales, crearemos nuevos tipos. Nos centraremos en la fabricación de látex funcionales, como látex de carboxilo y copolímero. Nuestro objetivo es llevar a la producción industrial un WHV de alta viscosidad Mooney, sin azufre regulado.Aumentar la cuota de mercadoEn los próximos años, el mercado de CR en mi país estará saturado, y los fabricantes relevantes podrán considerar la expansión de los mercados internacionales. Actualmente, la tendencia de desarrollo de CR a nivel mundial es que los mercados de Europa y Estados Unidos están en contracción, mientras que China, Europa del Este, Rusia y el Sudeste Asiático se encuentran en auge. CR no solo puede competir con los productos importados localmente, sino que también puede expandir progresivamente sus ventas a América del Norte, Europa del Este, Rusia, Asia Oriental y el Sudeste Asiático. Sitio web: www.elephchem.comWhatsApp: (+)86 13851435272Correo electrónico: admin@elephchem.com 
    LEER MÁS
  • Preparación de un nuevo tipo de estabilizador para caucho de cloropreno SN242
    Jul 14, 2025
    El adhesivo de cloropreno es popular en la industria zapatera debido a su excelente adhesión a los materiales. Entre ellos, el adhesivo de cloropreno injertado es el más utilizado. A medida que los materiales para calzado evolucionan hacia colores más claros, los requisitos de color para los adhesivos se vuelven cada vez más estrictos. Actualmente, el adhesivo SN24 es claro al principio, pero amarillea rápidamente tras un tiempo, especialmente si se expone al sol. Tras su preparación como adhesivo de cloropreno, se produce un problema de amarilleamiento que conlleva dos inconvenientes: primero, afecta la apariencia del calzado. En el caso del calzado de colores claros, como el deportivo y el de viaje, el problema es más evidente; segundo, el oscurecimiento del color es una manifestación del envejecimiento del polímero, lo que deteriora la adherencia del adhesivo. Por lo tanto, para mejorar la apariencia del calzado y evitar que amarillee con el uso, se recomienda utilizar un adhesivo resistente al amarilleamiento. 1. Materiales experimentalesLátex de caucho de cloropreno: Caucho de cloropreno SN-242, Sana Synthetic Rubber Co., Ltd.; tolueno, metacrilato de metilo, butanona, BPO, SKYPRENE G-40S; Caucho de cloropreno Denka A90 2. Resultados de las pruebas de rendimiento2.1 Comparación de soluciones de pegamentoLos diferentes tipos de pegamento seco obtenidos por el tambor se disolvieron en tolueno para obtener el cuadro de comparación de soluciones de pegamento en la Figura 1, y el cuadro de comparación de diferentes tipos de soluciones de pegamento después del calentamiento se muestra en la Figura 2. Como se puede observar en la Figura 1, el color de la solución de pegamento en este experimento no difiere mucho del color del mismo tipo de solución de pegamento en el país y en el extranjero. Tras añadir BPO y MMA y agitar bien, el color cambió. Tras la prueba, el SN242A se volvió amarillo. Las muestras de caucho doméstico n.º 2 y n.º 3 también se volvieron amarillas. Las demás muestras se oscurecieron un poco, pero nuestro caucho de prueba seguía siendo más claro que el caucho doméstico n.º 4. Su color era similar al de las muestras n.º 7 y n.º 8. Tras 20 minutos en un horno a 90 °C, las muestras de caucho n.º 1, 2, 3 y 5 se volvieron amarillas. Las muestras n.º 4, 6, 7 y 8 se aclararon. Después de una hora, los colores cambiaron de la misma manera, pero todo era más oscuro que a los 20 minutos. Como se puede ver en las Figuras 1 y 2, al disolverse esta goma de prueba en tolueno y calentarse con un iniciador, se veía un poco más blanca que la de pegamentos domésticos similares. Su aspecto era prácticamente el mismo que el de pegamentos extranjeros similares. 2.2 Comparación de injertosSegún la fórmula de injerto, se añadieron 0,1 partes de BPO y 50 partes de metacrilato de metilo, y se injertaron diferentes tipos de caucho de cloropreno. Se midió la viscosidad de la solución antes y después del injerto, como se muestra en la Tabla 4. La comparación entre el pegamento experimental y el pegamento doméstico después del injerto se muestra en la Figura 3. La Figura 3 presenta una comparación entre nuestro pegamento experimental y un pegamento doméstico tras el injerto. Al exponerse a radicales libres, los dobles enlaces insaturados de la cadena principal del caucho de cloropreno transforman el monómero MMA en un radical libre monomérico. Este se injerta y copolimeriza con CR mediante una reacción de transferencia de cadena, creando un copolímero de injerto complejo. Este proceso genera asimetría y polaridad en la estructura adhesiva, mejorando la adhesión. Según los datos de la Tabla 5, nuestro pegamento experimental muestra una alta tasa de injerto, cercana al 100 %. Esto soluciona el problema de las bajas tasas de injerto observadas con SN242, causadas por terminadores residuales. Además, elimina el problema de la formación de pegamento rojo durante el proceso de injerto. La Figura 3 muestra una tabla comparativa de la solución de pegamento injertada tras exponerse al sol durante varios días. El color de la solución de pegamento experimental es mucho más claro que el de SN242. 2.3 Comparación de GPCSegún la Figura 4 y la Tabla 5, el peso molecular relativo y la distribución del peso molecular relativo del pegamento experimental no difieren mucho de los del pegamento extranjero. El peso molecular relativo promedio ronda los 350.000, con una distribución del peso molecular relativo inferior a 2,3, superior al del pegamento injertado nacional. Además, la distribución del peso molecular relativo es estrecha y la cadena molecular presenta una mayor regularidad. 2.4 Comparación de DSCSegún los datos de la Figura 5 y la Tabla 5, la temperatura de transición vítrea del pegamento experimental es similar a la de los pegamentos nacionales y extranjeros. Su temperatura de cristalización, que es superior a la del pegamento nacional, es prácticamente igual a la del pegamento extranjero. 3 ConclusiónEl adhesivo de caucho de cloropreno desarrollado en este artículo presenta una excelente resistencia al amarilleo y un rendimiento de injerto estable. Mediante análisis DSC y GPC, se obtuvo caucho de cloropreno injertado con un peso molecular relativo uniforme y alta regularidad, cuyo rendimiento es comparable al del mismo tipo de caucho extranjero. Sitio web: www.elephchem.comWhatsApp: (+)86 13851435272Correo electrónico: admin@elephchem.com
    LEER MÁS
  • Discusión sobre el proceso de producción de caucho de cloropreno doméstico
    Jul 11, 2025
    Caucho de cloropreno (CR) Es una variedad importante de caucho sintético. Resiste bien la luz, el envejecimiento, la flexión, los ácidos, las bases, el ozono, las llamas, el calor y el aceite. También posee buenas propiedades físicas y eléctricas. Su rendimiento integral es inigualable por el caucho natural y otros cauchos sintéticos. Se utiliza ampliamente en defensa, transporte, construcción, industria ligera y militar. El caucho de cloropreno tiene múltiples usos. Es un elemento clave en la fabricación de autopartes, maquinaria, artículos industriales y adhesivos. También se encuentra en materiales de construcción, telas recubiertas y aislamiento de cables y alambres. El caucho de cloropreno se utiliza para crear abrazaderas de arneses y amortiguadores para automóviles y maquinaria agrícola. Inicialmente, se utilizó caucho de cloropreno de las empresas japonesas DENKA y Toyo Soda. Posteriormente, debido al aumento de los precios de las materias primas y a las restricciones en el proceso de adquisición, se llevaron a cabo investigaciones para sustituir el caucho de cloropreno importado por caucho de cloropreno nacional. Finalmente, se logró con éxito el objetivo de reemplazo y se resolvieron algunos problemas de proceso y fórmula del caucho de cloropreno doméstico en el proceso de uso. 1. Modelo de goma de neoprenoModelo de caucho de neopreno importado: Caucho de cloropreno Denka M120, producto de DENKA, Japón, bloques de color claro; B-10, producto de Toyo Soda, Japón, bloques de color claro. Modelo nacional de caucho de neopreno: CR3221, producto de Chongqing Changshou Chemical Co., Ltd. Caucho de policloropreno CR3221 Es un polímero de cloropreno con azufre y disulfuro de diisopropil xantato como reguladores mixtos, con una baja tasa de cristalización, una densidad relativa de 1,23, bloques de color beige o marrón y un tipo no contaminante. 2. Comparación del rendimiento del proceso de producciónEl neopreno importado ofrece un mejor manejo durante la producción. Por ejemplo, las piezas de caucho crudo no se pegan, incluso después del horneado, lo que facilita su medición. El proceso es fluido; no se pega al rodillo, por lo que su extracción es sencilla. La película semiterminada es rígida y mantiene su forma.El neopreno doméstico no funciona tan bien. Las piezas de goma tienden a pegarse, sobre todo después del horneado. La goma también se pega al rodillo, lo que dificulta su retirada, y la película prefabricada se pega fácilmente y pierde su forma.A pesar de estas características, el neopreno doméstico presenta algunas ventajas. Mezcla el polvo más rápido y con menos esfuerzo, tanto en mezcladores internos como abiertos. El caucho japonés es más difícil de mezclar. En el mezclador abierto, el M-120 puede incluso desprenderse del rodillo al principio. El mezclador interno requiere más esfuerzo y tiempo, especialmente en invierno. El caucho mezclado doméstico sigue funcionando bien después de un largo periodo de almacenamiento. El caucho japonés, especialmente el M-120, se endurece y pierde su flexibilidad después de dos a cuatro semanas.Las pruebas demuestran que los métodos de producción que funcionan con el neopreno importado no funcionan bien con el neopreno nacional. El método original necesita algunos cambios. De lo contrario, será difícil que funcione para la producción, incluso si las características físicas y mecánicas cumplen con los estándares. 3. ConclusiónEn comparación con el caucho de cloropreno japonés, el caucho de cloropreno nacional CR3221 presenta una viscosidad Mooney más baja y una mayor, lo que favorece la mezcla y el consumo de polvo, y puede reducir significativamente el tiempo de operación. Sin embargo, su procesabilidad es deficiente y la operación es difícil. Si la temperatura no se controla correctamente, la operación es incorrecta o el caucho se mezcla demasiado, el rodillo puede atascarse o incluso no descargarse correctamente. Seleccionando las condiciones y métodos de proceso correctos y ajustando la fórmula adecuadamente, se pueden satisfacer plenamente las necesidades de producción. Sitio web: www.elephchem.comWhatsApp: (+)86 13851435272Correo electrónico: admin@elephchem.com
    LEER MÁS
  • ¿Cómo es la resistencia al envejecimiento de la correa de distribución de caucho de cloropreno?
    Jul 08, 2025
    Caucho de cloropreno (CR)El neopreno, un material sintético, es una opción común para fabricar correas de distribución debido a sus excelentes propiedades físicas y químicas. Las correas de distribución de neopreno resisten bien el envejecimiento y funcionan mejor en sistemas de transmisión convencionales, pero algunas situaciones pueden requerir materiales diferentes.1. Resistencia al envejecimiento de las correas de distribución de caucho de cloroprenoEl neopreno resiste bien la oxidación, lo que ayuda a que las correas de distribución se mantengan flexibles y resistentes durante el uso regular. Esto evita que el material se vuelva frágil o se rompa por oxidación, lo que lo hace ideal para máquinas expuestas al aire durante períodos prolongados, ya que reduce la posibilidad de grietas o endurecimiento de la superficie.Resistencia al calor: El rango de temperatura de funcionamiento es generalmente entre -20 °C y 100 °C, y puede funcionar durante mucho tiempo en un entorno de temperatura media-alta; en condiciones de alta temperatura, aunque su rendimiento disminuirá ligeramente, el proceso de envejecimiento se puede retrasar agregando agentes resistentes al calor.Rendimiento anti-ultravioleta: el neopreno tiene una capacidad anti-ultravioleta moderada, pero la superficie puede oxidarse bajo la exposición prolongada a la luz intensa, lo que provoca cambios de color y la formación de pequeñas grietas.Resistencia a la humedad: El neopreno tiene buena resistencia a la humedad y es adecuado para entornos con alta humedad. No se deteriora fácilmente por la penetración de humedad.Resistencia a la corrosión química(Caucho de cloropreno SN-236T):Tiene buena resistencia a la corrosión de grasas, ácidos débiles, álcalis y algunos solventes químicos, lo que ralentiza el ritmo de envejecimiento, pero no es adecuado para el contacto con productos químicos oxidantes fuertes. 2. Escenarios aplicables de las correas de distribución de caucho de cloroprenoEquipos de transmisión industrial(Caucho de cloropreno SN-244X):Aplicable a la transmisión de potencia de equipos mecánicos convencionales, como maquinaria textil, equipos de embalaje y equipos de procesamiento general.Entorno de temperatura media: funciona bien en escenarios de aplicación de temperatura media y alta (por debajo de 100 °C), como equipos de secado industrial o sistemas HVAC.Ambiente interior: Equipos con bajos requerimientos de resistencia a los rayos UV, como equipos de automatización de interiores o sistemas de bajo mantenimiento.Humedad media y ambiente químico: Se puede aplicar a equipos que entran en contacto con aceites y ambientes ácidos y alcalinos débiles, como maquinaria de procesamiento de alimentos y equipos químicos ligeros. 3. Limitaciones de la resistencia al envejecimiento de la correa de distribución de caucho de cloroprenoLa exposición prolongada a temperaturas superiores a 100 °C puede acelerar el envejecimiento, lo que reduce la flexibilidad o endurece la correa de distribución. En estas condiciones, las correas de caucho fluorado o de silicona son la mejor opción.La exposición prolongada a la luz solar intensa puede causar oxidación y agrietamiento de la superficie, lo que reduce la vida útil de la correa. Se recomienda el uso de correas de poliuretano o con recubrimientos anti-UV para instalaciones en exteriores.Los ácidos fuertes, las bases o los disolventes químicos concentrados pueden provocar corrosión si el material no es lo suficientemente resistente. 4. Métodos para prolongar la resistencia al envejecimiento de las correas de distribución de caucho de cloroprenoAlmacenamiento razonable: Almacenar en un ambiente seco, ventilado y protegido de la luz para evitar la radiación ultravioleta y las altas temperaturas.Inspección periódica: compruebe periódicamente si hay grietas o endurecimiento en la superficie de la correa de distribución durante el uso y elimine los residuos de aceite y productos químicos a tiempo.Adición de antioxidantes: al agregar antioxidantes o ingredientes anti-ultravioleta durante el proceso de fabricación, se puede mejorar significativamente la resistencia al envejecimiento de la correa de distribución.Optimizar las condiciones de trabajo: evitar hacer funcionar la correa síncrona bajo tensión excesiva o temperaturas extremas para reducir el riesgo de envejecimiento. Las correas síncronas de caucho de cloropreno resisten bien la oxidación, el calor y la humedad, por lo que envejecen lentamente y son aptas para muchos trabajos estándar. Sin embargo, podrían no funcionar tan bien en condiciones de mucho calor, mucha luz ultravioleta o ambientes muy corrosivos. Puede prolongar la vida útil de estas correas almacenándolas y usándolas correctamente y manteniéndolas con regularidad. Por ello, son una opción sólida y económica. Sitio web: www.elephchem.comWhatsApp: (+)86 13851435272Correo electrónico: admin@elephchem.com
    LEER MÁS
1 2 3 4 5 6 7 8 9 10 15 16
Un total de 16paginas
dejar un mensaje

Hogar

Productos

Whatsapp

Contáctenos