S-LEC B

Hogar

S-LEC B

  • Diversas aplicaciones industriales de las resinas S-LEC B y S-LEC K
    Nov 26, 2025
    La resina de polivinil butiral S-LEC B y la resina de polivinil acetal S-LEC K se encuentran entre los materiales poliméricos más utilizados y fiables en la industria actual. El éxito de estos materiales reside en su especial estructura química. Se trata de una cuidadosa combinación de grupos hidroxilo, que favorecen la adhesión y la reactividad, y unidades acetal, que aportan flexibilidad y resistencia al agua a la cadena molecular. Gracias a este equilibrio, pueden utilizarse como resinas termoplásticas o termoendurecibles. Son importantes en numerosas industrias, como la electrónica, la automoción, los recubrimientos y la impresión.1. Sector de electrónica y energíaEn la fabricación de precisión, muchos materiales necesitan aglutinantes temporales para mantener su forma antes del proceso de moldeo final. Tras el moldeo, estos aglutinantes deben descomponerse completamente y evaporarse al exponerse a altas temperaturas. Las resinas S-LEC B/K son una buena opción para este propósito, ya que se mezclan bien, se adhieren correctamente y su descomposición térmica se puede controlar.♣ Aglutinantes de polvos cerámicos y metálicosAplicaciones: Moldeo de polvos cerámicos o metálicos en pantallas planas (FPD), células solares y diversos componentes electrónicos.Valor: Como aglutinante en polvo, S-LEC B/K dispersa eficazmente las partículas y proporciona una buena estabilidad dimensional, garantizando la integridad de la estructura del cuerpo verde antes de la sinterización. La resina se descompone limpiamente durante la sinterización a alta temperatura, según el análisis termogravimétrico. La descomposición ocurre principalmente entre 300 °C y 500 °C. Esto evita que el material sobrante afecte negativamente al rendimiento final de los componentes electrónicos.Grados específicos: Se recomiendan grados S-LEC B específicos con pesos moleculares altos para este uso debido a su fuerte durabilidad de película y adhesión.♣ Adhesivos para placas de circuito impresoLas resinas S-LEC B/K se utilizan habitualmente en combinación con resinas termoendurecibles, como las resinas fenólicas, como adhesivos entre preimpregnados de placas de circuito impreso y láminas de cobre. Sus contribuciones incluyen:Flexibilidad y soldabilidad: La flexibilidad proporcionada por S-LEC B/K mejora la capacidad de absorción de tensiones del sistema de resina curada, ayudando a mejorar la resistencia de la capa adhesiva al choque térmico y garantizando una excelente resistencia al pelado.Ventaja de alta Tg: En aplicaciones de PWB con requisitos de resistencia al calor extremadamente altos, los grados de temperatura de transición vítrea (Tg) alta de S-LEC K (por ejemplo, S-LEC K KS-5 o S-LEC K KS-10) son aún más importantes, ya que proporcionan la estabilidad térmica necesaria para soportar las temperaturas de procesamiento posteriores. 2. Recubrimientos y barnicesLa resina S-LEC B/K también es útil en recubrimientos y barnices, ya que se adhiere bien a diversas superficies, como metales, plásticos y vidrio. Además, funciona bien con otras resinas para la reticulación, lo cual constituye una ventaja clave.♣ Imprimación de lavadoFunción principal: Esta es una de las aplicaciones más clásicas de S-LEC B/K. Se trata de una imprimación de pretratamiento para metales como el acero y el aluminio, que mejora eficazmente la adhesión de las capas de acabado posteriores a la superficie metálica y proporciona protección contra la oxidación a corto plazo.Aplicaciones: Ampliamente utilizado en componentes estructurales que requieren protección subyacente, como barcos, puentes, pinturas de repintado de automóviles y vehículos ferroviarios.Ventajas de la formulación: S-LEC B/K muestra una gran compatibilidad al crear uniones fuertes con muchas capas de acabado, como las de PVC, melamina o recubrimientos fenólicos a base de aceite.♣ Barnices Metálicos y Recubrimientos para HornearS-LEC B/K, al mezclarse con precondensado de resina fenólica, permite crear recubrimientos de horneado de alta calidad para envases de alimentos. Su adición mejora significativamente la tenacidad, la adhesión y la durabilidad del recubrimiento. En barnices para láminas metálicas, esta resina proporciona una capa protectora transparente y flexible.♣ Recubrimientos de cueroLos grados S-LEC B, debido a su estructura química única, ofrecen alta flexibilidad y resistencia al impacto a baja temperatura, lo que los hace particularmente adecuados para recubrimientos de cuero.Las superficies de cuero recubiertas con resina S-LEC B exhiben una excelente elongación a temperatura ambiente, sin pérdida significativa de rendimiento incluso a bajas temperaturas, formando una película suave y resistente sobre el cuero. 3. Tintas de impresiónEn el campo de las tintas de impresión, la resina S-LEC B/K actúa como aglutinante y dispersante de pigmentos, adecuado para la impresión flexográfica y en huecograbado.Propiedades clave: Los grados adecuados para tintas son típicamente S-LEC B/K de baja viscosidad, como S-LEC B BL-10.Función: La resina garantiza una dispersión uniforme de los pigmentos en disolventes y proporciona una fuerte adhesión a sustratos (como películas plásticas) tras el curado de la tinta. Sus propiedades no tóxicas e inodoras la hacen ideal para el envasado de alimentos y aplicaciones donde el olor es crítico. 4. Aplicaciones de adhesivos especializadosAdemás de su aplicación en PWB (polarización y soldadura), S-LEC B/K también se utiliza como adhesivo clave, ya sea solo o en combinación con otros materiales.♣ Unión de bobinas esmaltadasLa inmersión o recubrimiento del alambre esmaltado de una bobina con una solución S-LEC B/K y su posterior calentamiento para fundir o curar la resina logra una unión y fijación fuertes entre los conductores. Esto se utiliza en la fabricación de bobinas para motores y transformadores, mejorando la estabilidad estructural y el aislamiento.♣ Sustratos de formulación adhesivaEl S-LEC B/K posee grupos hidroxilo en su estructura, lo que le permite reticularse con materiales como isocianatos o resinas epoxi. Este proceso crea adhesivos compuestos con buena resistencia al calor, tenacidad y propiedades adhesivas. 5. Otras aplicaciones diversasLa versatilidad de la resina S-LEC B/K también hace que desempeñe un papel importante en muchos campos profesionales específicos.♣ Adhesivo de película reflectanteEn la fabricación de películas reflectantes (como las señales de tráfico), el S-LEC B/K se utiliza como adhesivo para la capa reflectante de las microesferas de vidrio. Sus ventajas residen en su alta transparencia, excelente dispersión de pigmentos (como el polvo de aluminio) y una fuerte adhesión a películas de plástico como el PET.♣ Recubrimiento de cinta de grabación magnéticaLa resina exhibe una excelente dispersabilidad y adhesión a los polvos magnéticos, lo que la hace adecuada para su uso como adhesivo de recubrimiento de polvo magnético en cintas de grabación magnética avanzadas (como cintas de audio y video).♣ Tintas para cintas de transferencia de tinteEn la tecnología de transferencia por sublimación, la resina S-LEC B/K se utiliza para fabricar tintas colorantes debido a su excelente capacidad de dispersión para los colorantes sublimados. La serie de resinas S-LEC B/K se ha utilizado ampliamente en la industria moderna gracias a su estructura química modificable para proporcionar buena adhesión, reticulación, flexibilidad y un amplio rango de temperaturas de transición vítrea. La S-LEC B se utiliza tanto en recubrimientos flexibles como tradicionales, mientras que la S-LEC K se utiliza en adhesivos electrónicos de alta temperatura de transición vítrea. Estas resinas son importantes materiales de alto rendimiento que contribuyen al avance de la innovación industrial y a la mejora de los productos. Sitio web: www.elephchem.comWhatsApp: (+)86 13851435272Correo electrónico: admin@elephchem.com
    LEER MÁS
  • Solubilidad y propiedades termodinámicas de las resinas S-LEC B y S-LEC K
    Nov 24, 2025
    S-LEC B y S-LEC K Son tipos de polímeros que funcionan bien en recubrimientos, adhesivos y electrónica. Pueden realizar diversas tareas complejas gracias a la disposición de sus moléculas. En concreto, su solubilidad y su tolerancia al calor se controlan cuidadosamente.1. Características de solubilidad: la base estructural para la selección de disolventesLas resinas S-LEC B/K son bastante solubles, disolviéndose en alcoholes, ésteres, cetonas y aromáticos, especialmente bien en alcoholes. Las diferencias de solubilidad entre grados muestran variaciones en su composición química.1.1 El mecanismo de influencia de la estructura sobre la solubilidadLa solubilidad está limitada principalmente por la relación contradictoria entre el contenido de hidroxilo y el contenido de acetal en la cadena molecular de la resina.Contenido de hidroxilo: Los grupos hidroxilo presentan polaridad; las resinas con mayor contenido de hidroxilo presentan mayor hidrofilicidad y polaridad. Por ello, la resina se disuelve mejor en disolventes polares como los alcoholes y se vuelve más reactiva con las resinas termoendurecibles. Sin embargo, un contenido excesivo de hidroxilo puede hacer que la resina sea menos flexible y más vulnerable a los daños causados ​​por el agua.Contenido de acetal: Las unidades de acetal son grupos apolares. Cuanto mayor sea el contenido de acetal, más pronunciadas serán las características apolares de la resina. Esto la hace más soluble en disolventes apolares y mejora su flexibilidad, resistencia al agua y compatibilidad con otras resinas apolares.1.2 Diferencias de solubilidad entre modelosEl análisis de la tabla de solubilidad revela diferentes preferencias de disolventes para diferentes modelos:S-LEC B de bajo peso molecular y alto grado de hidroxilo (por ejemplo, S-LEC B BL-1): Estos grados tienen un alto contenido de hidroxilo (por ejemplo, BL-1H tiene un contenido de hidroxilo de aproximadamente 30 mol%), por lo que muestran una solubilidad completa en la mayoría de los solventes alcohólicos (por ejemplo, metanol, etanol, isopropanol) y solventes fuertemente polares (por ejemplo, N,N-dimetilformamida).Grados de S-LEC K de alta Tg (por ejemplo, S-LEC K KS-1): Las resinas S-LEC K están diseñadas para proporcionar una alta estabilidad térmica y su estructura molecular puede ser más compacta. Algunos grados de KS, aunque siguen siendo polares debido a su contenido de hidroxilo (alrededor del 25% molar), se hinchan o se disuelven parcialmente en alcoholes como el metanol y el etanol. Esto sugiere que la estructura del acetal afecta la capacidad de estos disolventes polares para humedecer las moléculas. Este comportamiento muestra las propiedades distintivas de su composición química.1.3 Ventajas de los disolventes mixtosUna característica del S-LEC B/K es que permite una mayor tolerancia al agua en los disolventes. Además, el uso de disolventes mixtos generalmente produce mejores resultados de disolución porque:Viscosidad reducida: Los disolventes mixtos ayudan a reducir la viscosidad general de la solución, lo que facilita el manejo de la aplicación.Estabilidad de almacenamiento: Los disolventes mixtos ayudan a mantener la viscosidad estable de la solución, lo que es beneficioso para el almacenamiento a largo plazo.Solubilidad optimizada: El equilibrio polar/no polar de los disolventes mixtos permite una humectación más efectiva de las tres unidades estructurales de la resina. 2. Propiedades termodinámicas: el papel dominante de la Tg y el punto de ablandamientoLas propiedades térmicas, como la temperatura de transición vítrea (Tg) y el punto de ablandamiento, son clave para la resistencia y el moldeo de una resina a altas temperaturas. La serie S-LEC B/K está disponible en una variedad de valores de Tg, desde 59 °C hasta 110 °C. Esto permite su uso en situaciones que requieren flexibilidad a bajas temperaturas o resistencia al calor.2.1 Diferencias estructurales en la temperatura de transición vítrea (Tg)S-LEC K (tipo de alta Tg): La resina S-LEC K utiliza cadenas laterales de acetaldehído más cortas (R:CH₃), lo que resulta en un empaquetamiento molecular más denso y alcanza el valor de Tg más alto de la serie. Por ejemplo, tanto KS-3 como KS-5 pueden alcanzar una Tg de 110 °C, lo que los convierte en materiales ideales para aplicaciones que requieren alta estabilidad térmica, como la unión de componentes electrónicos.S-LEC B (Propósito general y tipo flexible): El S-LEC B emplea cadenas laterales de butiraldehído más largas (R: -CH₂CH₂CH₃), lo que aumenta la separación entre las cadenas moleculares y el volumen libre, lo que resulta en una Tg relativamente baja. Por ejemplo, el BL-10 tiene una Tg de tan solo 59 °C. Esta menor Tg confiere al S-LEC B una excelente tenacidad y flexibilidad, mostrando una excepcional resistencia al impacto a bajas temperaturas.2.2 Efecto sinérgico de Tg y peso molecularEn el gráfico de Tg (Figura 9), la Tg del mismo tipo de acetal (p. ej., S-LEC B) generalmente muestra una ligera tendencia ascendente con el aumento del peso molecular. Por ejemplo, el rango de Tg de los grados de peso molecular medio (p. ej., BM-1) y alto (p. ej., BH-3) se encuentra aproximadamente entre 60 °C y 70 °C. Un mayor peso molecular contribuye a una mejor estabilidad termodinámica del polímero.2.3 Punto de ablandamientoEl punto de ablandamiento es un indicador importante para medir el comportamiento de fusión en caliente de las resinas. El diagrama de punto de ablandamiento (Figura 10) muestra que los grados S-LEC B/K tienen un amplio rango de temperatura de ablandamiento, desde aproximadamente 100 °C hasta más de 200 °C. En consonancia con la tendencia de Tg, los grados S-LEC K con alta Tg, como el KS-5, pueden alcanzar puntos de ablandamiento superiores a 200 °C, lo que le otorga una ventaja significativa en aplicaciones de fusión en caliente y procesamiento a alta temperatura. 3. Comportamiento de descomposición térmica: Perspectivas del análisis de TGEl análisis termogravimétrico (TG) se utiliza para estudiar la pérdida de masa de las resinas durante el calentamiento, revelando así sus características de descomposición térmica. El análisis TG de los grados S-LEC B (p. ej., BM-S y BM-2) muestra diferencias en distintas atmósferas:Atmósfera inerte (N2): En atmósfera de nitrógeno, la resina presenta un proceso de pérdida de masa relativamente simple y rápido. La descomposición suele comenzar alrededor de los 350 °C y completar su descomposición principal alrededor de los 450 °C.Atmósfera oxidante (aire): En atmósfera, el proceso de descomposición suele presentar una curva de pérdida de masa en varias etapas. La primera etapa de descomposición ocurre entre 300 °C y 400 °C, seguida de una segunda etapa de descomposición oxidativa, aproximadamente entre 450 °C y 550 °C, que finalmente puede conducir a una combustión completa. La solubilidad y las propiedades termodinámicas de las resinas S-LEC B y S-LEC K constituyen la base de sus versátiles aplicaciones. Mediante el control preciso de las cadenas laterales (butiraldehído y acetaldehído) de las unidades de acetal, así como de la relación entre los grupos hidroxilo y el peso molecular, esta serie de resinas logra los siguientes objetivos:Solubilidad: Las mezclas de disolventes equilibran las características polares (hidroxilo) y apolares (acetal) para adaptarse a diferentes tipos de recubrimiento. La mezcla de disolventes ayuda a alcanzar la viscosidad de aplicación requerida.Propiedades termodinámicas: La conmutación flexible entre la alta Tg de S-LEC K (hasta 110 °C) y la baja Tg de S-LEC B (hasta 59 °C) garantiza una amplia gama de aplicaciones, desde flexibilidad a baja temperatura hasta resistencia al calor a alta temperatura. Sitio web: www.elephchem.comWhatsApp: (+)86 13851435272Correo electrónico: admin@elephchem.com
    LEER MÁS
  • Análisis de la estructura y el rendimiento de S-LEC B y S-LEC K
    Nov 20, 2025
    Las resinas de alto rendimiento ocupan una posición única en el panorama de los materiales industriales modernos debido a sus propiedades integrales superiores. Entre muchos productos similares, las resinas de polivinil butiral S-LEC B y S-LEC KGracias a sus estructuras químicas únicas y flexibles, se han convertido en soluciones clave en campos que van desde la fabricación de electrónica de alta precisión hasta los recubrimientos especiales.El S-LEC B se introdujo por primera vez en la década de 1930, inicialmente utilizado en la industria como película intermedia para vidrio de seguridad, consolidándose como uno de los polímeros de alto rendimiento. El S-LEC K, como extensión funcional de esta serie, se centra en aplicaciones con estrictos requisitos de resistencia al calor debido a su elevada temperatura de transición vítrea (Tg). Si bien ambos se conocen colectivamente como la serie S-LEC B/K, sus diferencias de rendimiento radican en el sofisticado diseño de su estructura química. 1. Estructura química central: La fuente del rendimientoTanto S-LEC B como S-LEC K se derivan del alcohol polivinílico (PVA). Se preparan mediante la reacción de PVA con aldehídos específicos en un proceso denominado acetalización. Debido a limitaciones en el proceso de fabricación, la reacción de acetalización no se completa del todo, lo que da como resultado que la cadena molecular de la resina final conserve tres unidades estructurales cruciales que, en conjunto, determinan las propiedades del producto final:  ♠Unidad de acetal: Esta es la unidad funcional central de la resina, que le confiere hidrofobicidad y flexibilidad al material. La diferencia fundamental entre S-LEC B y S-LEC K reside en la cadena lateral (grupo R) de esta unidad:S-LEC B: El grupo aldehído R utilizado en la acetalización es -CH2CH2CH3. La cadena lateral más larga proporciona a S-LEC B una flexibilidad y solubilidad superiores en disolventes no polares.S-LEC K: El grupo aldehído R utilizado en la acetalización es -CH3. La cadena lateral más corta da como resultado un empaquetamiento más compacto de las cadenas moleculares, lo que confiere a S-LEC K una temperatura de transición vítrea (Tg) más alta y una mejor estabilidad térmica.♣Unidad hidroxilo (OH):La unidad se refiere a la fracción de PVA que no ha reaccionado y permanece dentro de la molécula de resina en una proporción específica. El grupo hidroxilo confiere a la resina una buena adhesión, especialmente a superficies polares como metales y vidrio, y le permite atraer agua. Aún más importante, este grupo hidroxilo permite que la resina forme enlaces cruzados con resinas que se endurecen al calentarse, como las resinas epoxi y los isocianatos. Este endurecimiento amplía las aplicaciones de la resina.♣Unidad de acetilo: Estas unidades traza permanecen debido a una descomposición incompleta durante la producción de PVA.Las proporciones de estas tres unidades en la cadena molecular, controladas con precisión a través del proceso de fabricación, constituyen el amplio espectro de los grados de resina de la serie S-LEC B/K. 2. Regulación del desempeño: Un equilibrio preciso de factores influyentesLas propiedades físicas y químicas de esta serie de resinas no son fijas, sino que están reguladas con precisión por los siguientes tres factores principales:2.1 La unidad de los opuestos y el contenido de hidroxiloEl contenido de acetal e hidroxilo en la estructura molecular suele presentar una relación inversa, y su equilibrio determina directamente las propiedades clave de la resina:Flexibilidad y resistencia al agua: Cuanto mayor sea el contenido de acetal, más pronunciadas serán las características no polares de la resina, mejor será su flexibilidad, resistencia al agua y compatibilidad con resinas no polares.Adhesión y reactividad: La cantidad de grupos hidroxilo presentes afecta considerablemente la capacidad de adhesión de una resina, sobre todo cuando se requiere adsorción polar. Asimismo, el contenido de hidroxilo también influye en cómo reacciona la resina con resinas termoestables y en su solubilidad en disolventes polares.2.2 El papel decisivo del peso molecular en el rendimiento de la aplicaciónEl peso molecular (grado de polimerización) de la resina afecta directamente a las siguientes características cruciales de aplicación:Dureza de la película: Cuanto mayor sea el peso molecular, mayor será la resistencia de la película o recubrimiento fabricado con la resina.Viscosidad de la solución: El peso molecular es el principal factor que afecta la viscosidad de la solución. Con un contenido de sólidos determinado, los grados de mayor peso molecular ofrecen una mayor viscosidad, lo que los hace adecuados para ciertas aplicaciones de espesamiento o alta viscosidad.Adhesión: El peso molecular también influye significativamente en la resistencia adhesiva final.La serie S-LEC B/K ofrece un amplio rango de pesos moleculares, desde aproximadamente 14.000 hasta 130.000. Los ingenieros pueden elegir los materiales en función de la viscosidad, la resistencia y la flexibilidad necesarias, seleccionando diferentes contenidos de acetal.2.3 Propiedades termodinámicas: Tg y estabilidad de la resistencia al calorLa temperatura de transición vítrea (Tg) es un indicador clave de la resistencia térmica de un material. Esta serie de resinas abarca un rango de Tg de 59 °C a 110 °C, lo que les permite satisfacer las necesidades de aplicaciones que van desde aquellas a bajas temperaturas que requieren alta flexibilidad hasta aquellas a altas temperaturas que requieren alta estabilidad.Ventajas del S-LEC K: resinas de acetal S-LEC K, como S-LEC K KS-1, S-LEC K KS-5, y S-LEC K KS-10Suelen presentar la temperatura de transición vítrea (Tg) más alta, alcanzando hasta 110 °C. Esto los hace idóneos para aplicaciones que requieren alta resistencia al calor y un punto de reblandecimiento elevado; algunos tipos pueden llegar a los 200 °C. Algunos ejemplos son la unión de placas de circuitos impresos y su uso en componentes electrónicos complejos.Ventajas del S-LEC B: Las resinas acetales S-LEC B, que tienen temperaturas de transición vítrea más bajas, proporcionan una buena resistencia al impacto a bajas temperaturas y una mayor flexibilidad. 3. Expansión funcional: Reacción de reticulación y potencial termoestable  La serie S-LEC B/K no se limita a su uso como material termoplástico. Gracias a sus numerosos grupos hidroxilo, esta sustancia puede reticularse y curarse al mezclarse con diversas resinas termoestables, como resinas fenólicas, epoxi o isocianatos. Esta capacidad de reticulación supone una ventaja significativa en aplicaciones industriales, ya que permite a los ingenieros combinar la tenacidad, adhesión y flexibilidad superiores de las resinas termoplásticas con la alta resistencia al calor, a los productos químicos y la resistencia mecánica de las resinas termoestables mediante el diseño de la formulación. El resultado son materiales compuestos de alto rendimiento que superan las limitaciones de las resinas individuales. Por ejemplo, este proceso de reticulación y curado es fundamental para lograr el rendimiento necesario en recubrimientos y adhesivos de alta gama. Las resinas S-LEC B y S-LEC K son polímeros de alto rendimiento de gran importancia. Su valor radica en la posibilidad de ajustar sus propiedades, como la flexibilidad y la adhesión. Esto se logra mediante un control preciso de las cadenas laterales de acetal (utilizando butiraldehído o acetaldehído) y la cantidad de grupos hidroxilo en la resina. Este control meticuloso de la estructura molecular garantiza que S-LEC B/K pueda proporcionar continuamente soluciones de materiales de alto rendimiento para diversos sectores industriales clave, como la electrónica, la automoción, los recubrimientos y los adhesivos. Sitio web: www.elephchem.comWhatsApp: (+)86 13851435272Correo electrónico: admin@elephchem.com
    LEER MÁS
dejar un mensaje

Hogar

Productos

Whatsapp

Contáctenos