Kuraray PVAC

Hogar

Kuraray PVAC

  • Study on the Synthesis Process of Polyvinyl Acetate Emulsions
    Aug 20, 2025
    Polyvinyl acetate emulsion (PVAc), commonly known as white latex, are widely used as a key polymer adhesive due to their ability to be directly modified with a variety of additives, excellent mechanical strength, and resistance to adhesive defects. Furthermore, their environmental friendliness as a water-based adhesive makes them particularly attractive. However, due to different synthesis processes, white latexes also have some drawbacks, such as limited water and heat resistance, generally high viscosity, and high solids content, which increase their cost.   1. Effect of Polyvinyl Alcohol on Emulsion Viscosity Experiments were conducted using fully alcoholyzed PVA1799 and partially alcoholyzed PVA1788. The viscosity of the emulsion prepared with PVA1788 was 3.8 Pa·s, while that of the emulsion prepared with PVA1799 was 3.0 Pa·s. This is primarily due to the grafting effect of the tertiary hydrogen atoms -CH(OCOCH3)- in PVA1788. In addition, different polyvinyl alcohol production methods result in different distributions of residual acetate groups within the molecule, resulting in different viscosities in the resulting polyvinyl acetate emulsions. PVA1788 was selected for this experiment.   2. Effect of Initiator on Emulsion Viscosity and Solids Content Generally, at a specific temperature for polymerization, if you start with very little initiator, both viscosity and solids increase as you add more initiator. The viscosity peaks at 4.2 Pa·s when the initiator is 0.6% of the total monomer, resulting in a 36% solids content. If you keep adding initiator past that point, the emulsion gets less viscous, but the solids stay about the same. During emulsion polymerization, the pH of the medium directly affects the decomposition rate of the initiator. The pH of the emulsion polymerization system is required to be around 6. Due to the presence of a small amount of Acetic Acid Vinyl Ester Monomer and the sulfate groups generated during initiator decomposition, the pH of the system drops to 4-5. Therefore, an appropriate amount of sodium bicarbonate is used to adjust the pH.   3. Effect of Emulsifier Amount on Emulsion Viscosity With other conditions unchanged, the emulsifier dosage was varied. The results are shown in Figure 1. Too little emulsifier results in poor emulsion stability and easy demulsification. Emulsion viscosity increases with increasing emulsifier dosage, reaching its maximum viscosity at 0.15% of the total monomer content. When the emulsifier dosage exceeds the optimal value, the emulsion particles increase in number, their size decreases, and the viscosity decreases.   4. Effect of Reaction Temperature on Emulsion Viscosity and Solids Content Experiments show that when you keep the reactant ratios, addition method, and stirring the same, changing the reaction temperature really does change how thick the polyvinyl acetate emulsion is and how much solid stuff is in it. The results are shown in Table 2. This is because polymerization is endothermic, so higher reaction temperatures favor the reaction. However, when the reaction temperature reaches 80°C, exceeding the boiling point of vinyl acetate monomer (72°C), it increases reflux and consumes energy. Low temperatures also slow the reaction, leading to incomplete reaction and low emulsion viscosity.   5. Effect of Monomer Purity on Emulsion Viscosity and Solids Content Due to storage and transportation requirements, polymerization inhibitors are often added to vinyl acetate before shipment to maintain its stability. To facilitate polymerization, the vinyl acetate was distilled before the experiment. The results are shown in Table 3. Table 3 shows that the properties of vinyl acetate directly affect the emulsion viscosity and solids content. Distillation of the monomer significantly increases the viscosity of the polyvinyl acetate.   6. Conclusions The traits of Vinyl Acetate Monomer (VAM) and polyvinyl alcohol change how thick the emulsion is and how much solid stuff is in it. The viscosity and solid content of an emulsion are affected by the reaction temperature, the amount of reactants, and how you add monomers, emulsifiers, and initiators during the emulsification procedure. We got a milky white polyvinyl acetate emulsion with some great qualities. It has a viscosity of 5.8 Pa•s, a solid content of 42%, a pH between 6 and 8, and a blue tint. The best part is, we achieved this by keeping the reaction temperature at 75 ℃ and carefully adding the emulsifier (0.15%) and initiator (0.6%) drop by drop in batches, based on the total monomer amount.   Website: www.elephchem.com Whatsapp: (+)86 13851435272 E-mail: admin@elephchem.com
    LEER MÁS
dejar un mensaje

Hogar

Productos

Whatsapp

Contáctenos