compra de alcohol polivinílico

Hogar

compra de alcohol polivinílico

  • Preparation and Mechanical Properties of Polyvinyl Alcohol Film
    Aug 14, 2025
    Polyvinyl alcohol (PVA) is a widely used synthetic material. PVA ability to dissolve in water and break down naturally makes it a good choice for packaging films. The main production methods for PVA film are aqueous solution coating and melt blow molding. PVA is hard to shape with heat because it melts at a higher temperature than it decomposes. This is due to the strong links between its molecules and its crystal structure. Therefore, the most important factor in the processing of PVA film is the selection of appropriate additives.   1. Effect of Plasticizer Amount on Tensile Strength, Tear Strength, and Elongation at Break of Polyvinyl Alcohol Film As shown in Figure 1, film ability to resist breaking lessens as more plasticizer is added. This suggests that plasticizers reduce how strong the film is. The plasticizer gel theory explains that when the plasticizer mixes with the resin, it loosens the points where the resin molecules connect. These connections have different strengths. The plasticizer pulls them apart and hides the forces that hold the polymer together. This reduces the secondary forces between the polymer macromolecules, increases the flexibility of the macromolecular chains, and accelerates the relaxation process. Tensile strength goes down as you add more plasticizer. As the amount of plasticizer is increased, the film becomes more flexible and stretches further before breaking. This suggests that plasticizers make the film more pliable. Plasticizers achieve this by weakening the attraction between the large molecules in the polymer. This increased flexibility and longer relaxation period lead to the film ability to stretch further. The data indicates that as more plasticizer is added, the film becomes easier to tear. This likely happens as the plasticizer reduces the film's surface energy and lessens the energy needed for both plastic flow and lasting deformation. These factors, in turn, contribute to the film's reduced resistance to tearing.   2. Effect of Crosslinker Amount on the Tensile Strength, Elongation at Break, and Tear Strength of PVA Film As shown in Figure 3, the film's tensile strength goes up gradually as the amount of crosslinker is increased, during which the elongation at break goes down gradually. When a certain point is reached, the film's tensile strength goes down gradually, while the elongation at break goes up gradually. At first, as more crosslinker is added, the number of working polymer chains goes up, intermolecular forces get stronger, and the polymer chains become less flexible. The ability of the large molecular chains to change shape and rearrange decreases while the chain relaxation is difficult. So, the tensile strength goes up, while the elongation at break goes down. Continuing the use of crosslinkers causes degradation and branching to increase gradually, which decreases the number of working polymer chains, and increases the flexibility of the polymer chains. The ability of the large molecular chains to change shape and rearrange increases, while the chain relaxation becomes easier. As a result, the tensile strength starts to go down again, while the elongation at break goes back up. As shown in Figure 4, the tear strength of the film changes with the amount of crosslinker. At first, it goes up, but then it starts to go down. This happens because when crosslinking starts, more crosslinker helps the polymer network form. This makes the film's surface energy go up gradually. It then needs more energy to spread plastic flow and irreversible viscoelastic processes. Because of this, the film's tear strength gets better as crosslinking happens. But, if there is too much crosslinker with too much polymer broken down, and there are more branching reactions, the tear strength gets worse.   3. Conclusions When you add more plasticizer, PVA film becomes less strong but stretches and tears more easily. When you add more crosslinker, film strength and resistance to tearing improve at first, but then weaken, while its ability to stretch keeps getting better.   Website: www.elephchem.com Whatsapp: (+)86 13851435272 E-mail: admin@elephchem.com
    LEER MÁS
  • ¿Confusión con los guantes? Aquí tienes la guía
    Jun 30, 2025
    Los guantes son las herramientas de protección más utilizadas en el laboratorio, además de las gafas protectoras. Existen muchos tipos de guantes, y cada uno tiene un uso distinto. 1. Caucho natural (látex)Los guantes de látex, fabricados con caucho natural, suelen carecer de forro y están disponibles en versiones limpias y estériles. Estos guantes ofrecen una protección eficaz contra álcalis, alcoholes y diversas soluciones acuosas de dilución química, además de prevenir mejor la corrosión causada por aldehídos y cetonas. 2. Guantes de cloruro de polivinilo (PVC)Los guantes no contienen alérgenos, no tienen polvo, generan poco polvo, tienen bajo contenido iónico, son altamente resistentes a la corrosión química, protegen contra casi todas las sustancias químicas peligrosas y poseen propiedades antiestáticas. Las superficies engrosadas y tratadas (como las de vellón) previenen el desgaste mecánico general y el frío, con una temperatura de funcionamiento de -4 °C a 66 °C. Pueden usarse en entornos sin polvo.Normas de clasificación de guantes de PVC:Productos de grado A, sin agujeros en la superficie de los guantes (guantes de PVC con polvo), polvo uniforme, sin polvo obvio, color blanco lechoso transparente, sin manchas de tinta obvias, sin impurezas y el tamaño y las propiedades físicas de cada pieza cumplen con los requisitos del cliente.Productos de grado B, manchas leves, 3 pequeñas manchas negras (1 mm ≤ diámetro ≤ 2 mm) o una gran cantidad de pequeñas manchas negras (diámetro ≤ 1 mm) (diámetro> 5), deformación, impurezas (diámetro ≤ 1 mm), color ligeramente amarillo, marcas graves de uñas, grietas y el tamaño y las propiedades físicas de cada pieza no cumplen con los requisitos. 3. Guantes de PELos guantes de PE son desechables y están hechos de polietileno. Son impermeables, resistentes al aceite, antibacterianos y a ácidos y bases. Nota: Los guantes de PE son seguros para usar con alimentos y no son tóxicos. Es mejor mantener los guantes de PVC alejados de los alimentos, especialmente si están calientes. 4. Guantes de caucho de nitriloLos guantes de caucho de nitrilo se dividen generalmente en guantes desechables, guantes sin forro para trabajos medianos y guantes con forro para trabajos ligeros. Estos guantes previenen la erosión causada por grasas (incluida la grasa animal), xileno, polietileno y disolventes alifáticos; también previenen la mayoría de las formulaciones de pesticidas y se utilizan a menudo en el manejo de componentes biológicos y otros productos químicos. Los guantes de caucho de nitrilo no contienen proteínas, compuestos amino ni otras sustancias nocivas, y rara vez causan alergias. No contienen silicona y poseen ciertas propiedades antiestáticas, ideales para las necesidades de producción de la industria electrónica. Presentan bajos residuos químicos superficiales, bajo contenido de iones y pequeñas partículas, y son adecuados para entornos de salas blancas estrictas. 5. guantes de neoprenoSimilares a la comodidad del caucho natural, los guantes de neopreno son resistentes a la luz, al envejecimiento, a la flexión, a los ácidos y álcalis, al ozono, a la combustión, al calor y al aceite. 6. Guantes de caucho butílicoEl caucho de butilo solo se utiliza como material para guantes sin forro de tamaño mediano y se puede utilizar para operaciones en cajas de guantes, cajas anaeróbicas, incubadoras y cajas de operaciones; tiene una gran durabilidad contra el ácido fluorórico, agua regia, ácido nítrico, ácidos fuertes, álcalis fuertes, tolueno, alcohol, etc., y es un guante líquido resistente sintético de caucho especial. 7. Guantes de alcohol polivinílico (PVA)Alcohol polivinílico (PVA) Se puede utilizar como material para guantes forrados de tamaño mediano, por lo que este tipo de guantes puede proporcionar un alto nivel de protección y resistencia a la corrosión contra una variedad de productos químicos orgánicos, como hidrocarburos alifáticos y aromáticos, disolventes clorados, fluorocarbonos y la mayoría de las cetonas (excepto acetona), ésteres y éteres. Sitio web: www.elephchem.comWhatsApp: (+)86 13851435272Correo electrónico: admin@elephchem.com
    LEER MÁS
dejar un mensaje

Hogar

Productos

Whatsapp

Contáctenos